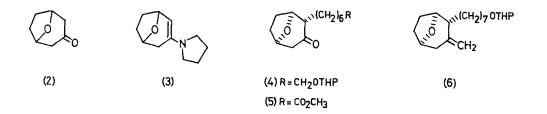
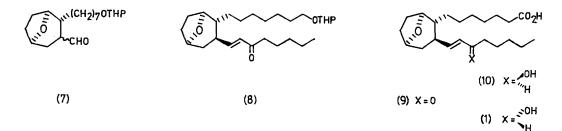

Synthesis of a stable analogue of thromboxane ${\rm A}_1$ (±)-9a-homo-(11,12)-deoxa-(11,12)-methylene thromboxane ${\rm A}_1$

M.F. Ansell, * M.P.L. Caton, † and J.S. Mason

Department of Chemistry, Queen Mary College, University of London, London, El 4NS and ⁺The Research Laboratories, May and Baker Ltd., Dagenham, Essex, RM10 7XS


Summary: The thromboxane A_1 (TXA₁) analogue (1) has been synthesised from the ketone (2).

Thromboxane A_2 (TXA₂), an unstable (t₁, 32 sec. at 37[°]) metabolite of the prostaglandin endoperoxides, has potent blood platelet aggregating and vasoconstrictor properties.¹ Thromboxane A_1 (TXA₁) however, is not synthesised from its corresponding prostaglandin endoperoxides by human platelet microsomes,² and its occurrence has not been reported. We report herein the first synthesis of a stable analogue of this biologically elusive thromboxane.


The starting bicyclic ketone (2)³ was prepared in 51% overall yield, using a modification of the procedure of Hoffmann and Iqbal,⁴ by the triethyl borate-zinc promoted cycloaddition of 1,1,3,3-tetrabromoacetone to furan, immediately followed by reductive debromination (Zn-Cu couple, NH₄Cl, CH₃OH) and then catalytic hydrogenation (10% Pd/C).

The pyrrolidine enamine (3) $[\nu_{max} 3050, 1630 \text{ cm}^{-1}; \delta(\text{CDC1}_3) 4.51 (2\text{H,bcm}), 4.37 (1\text{H,d,J=5Hz}), 2.98 (4\text{H,m}), 2.68 (1\text{H,d}ofd, J=12\text{Hz},5\text{Hz})] of (2) was alkylated with the THP ether of 7-bromo-heptanol to give stereospecifically the desired$ *exo* $-alkylated ketone (4) <math>[\nu_{max} 1710 \text{ cm}^{-1}; \delta(\text{CDC1}_3)]$

4.66 (lH,bt,J=5Hz), 4.56 (lH,bs), 4.44 (lH,bd,J=6Hz), 2.77 (lH,d of d,J=16Hz,6Hz); M^{+} m/e 324.2308]. The *exo*-stereochemistry of (4) was unambiguously assigned from NMR spectral data, and was confirmed by an X-ray crystal structure of the methyl ester (5), prepared by the same method from the enamine (3).

Addition of N-methylphenylsulphonimidoylmethyllithium⁵ to the ketone (4), followed by treatment with aluminium amalgam and acetic acid in aqueous THF gave the alkene (6) [ν_{max} 3070, 1645 cm⁻¹; δ (CDCl₃) 4.75 (2H,m)]. Hydration (BH₃.THF/H₂O₂,OH^{Θ}) and then pyridinium chlorochromate oxidation of (6) gave a *cis-trans* (8:3) mixture of aldehydes (7) [ν_{max} 1725 cm⁻¹; δ (CDCl₃) 9.80, 9.65 (1H,2s)]. Isomerisation of (7) with 1,5-diazabicyclo[4.3.0]nonane (DBN) in dichloromethane gave predominantly the *trans*-isomer (*cis:trans* ratio 3:7), expected from steric considerations to be the thermodynamically more stable isomer. The *trans*-isomer of (7) [δ (CDCl₃) 9.65 (1H,s)] was separated by chromatography (silica gel, acetone:40-60[°] petroleum 1:25) and immediately used in a Horner-Wittig reaction with dimethyl (2-oxoheptyl)phosphonate to give the enone (8) [ν_{max} 1690, 1670, 1625, 980 cm⁻¹; λ_{max} (EtOH) 230 nm (ε =10,000); δ (CDCl₃) 6.77 (1H,d of d,J=16Hz,6Hz), 5.98 (1H,d of d,J=16Hz,1.5Hz), 4.56 (1H,bs); M⁺ m/e 434.3408].

Hydrolysis of the THP ether of (8) with 2M hydrochloric acid in ethanol (1:16) and oxidation of the resulting alcohol with pyridinium dichromate in DMF gave the enone-acid (9) [v_{max} 2500-3600, 1710, 1670, 1625, 985 cm⁻¹] which on reduction with lithium tri-sec-butylborohydride (L-selectride) in THF at 0° gave the TXA₁ analogue (1) and its 15-hydroxy epimer (10) as a mixture of diastereoisomeric alcohols [v_{max} 2400-3600, 1710, 975 cm⁻¹; δ (CDCl₃) 4.9-5.75 (4H,bcm), 4.35 (2H,bs), 4.08 (1H,bq,J=6Hz), 1.05-2.75 (28H,bcm), 0.89 (3H,t,J=6Hz); M⁺ m/e 366].

Preliminary pharmacological studies with the mixture of (1) and (10) indicated that it had weak TXA₂-like properties with respect to vasoconstriction, but had no effect on blood platelet aggregation.

Acknowledgement: The receipt of a Science Research Council CASE award by J.S.M. is gratefully acknowledged.

References:

- 1. M. Hamberg, J. Svensson, and B. Samuelsson, Proc. Nat. Acad. Sci., U.S.A., 72, 2994 (1975).
- 2. P. Needleman, M. Minkes, and A. Raz, Science, 193, 163 (1976).
- 3. A.E. Hill, G. Greenwood, and H.M.R. Hoffmann, J. Am. Chem. Soc., 95, 1338 (1973).
- 4. H.M.R. Hoffmann and M.N. Iqbal, Tetrahedron Lett., 4487 (1975).
- 5. C.R. Johnson and R.A. Kirchhoff, J. Am. Chem. Soc., 101, 3602 (1979).